首页 > 学科考试 > 数学

高二数学重点知识点

时间:2025-03-17 11:38:21
高二数学重点知识点通用9篇

高二数学重点知识点通用9篇

在我们的学习时代,是不是经常追着老师要知识点?知识点就是掌握某个问题/知识的学习要点。想要一份整理好的知识点吗?以下是小编整理的高二数学重点知识点,仅供参考,欢迎大家阅读。

高二数学重点知识点1

不等式

一、不等式的基本性质:

注意:

(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

(2)注意课本上的几个性质,另外需要特别注意:

①若ab>0,则,即不等式两边同号时,不等式两边取倒数,不等号方向要改变。

②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小

二、均值不等式:两个数的算术平均数不小于它们的几何平均数。

基本应用:

①放缩,变形;

②求函数最值:

注意:

①一正二定三相等;

②积定和最小,和定积。

常用的方法为:拆、凑、平方;

三、绝对值不等式:

注意:上述等号“=”成立的条件;

四、常用的基本不等式:

五、证明不等式常用方法:

(1)比较法:作差比较:

作差比较的步骤:

⑴作差:对要比较大小的两个数(或式)作差。

⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。

(2)综合法:由因导果。

(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……

(4)反证法:正难则反。

(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

放缩法的方法有:

⑴添加或舍去一些项,

⑵将分子或分母放大(或缩小)

⑶利用基本不等式,

(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x轴的线段长不变,平行于y轴的线段长减半。

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。

3、表(侧)面积与体积公式:

⑴柱体:

①表面积:S=S侧+2S底;

②侧面积:S侧=;

③体积:V=S底h

⑵锥体:

①表面积:S=S侧+S底;

②侧面积:S侧=;

③体积:V=S底h:

⑶台体

①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:

①表面积:S=;

②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:

①线线平行线面平行;

②面面平行线面平行。

(2)平面与平面平行:

①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤——Ⅰ。找或作角;Ⅱ。求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

空间中直线与平面、平面与平面之间的位置关系

1、直线与平面有三种位置关系:

(1)直线在平面内——有无数个公共点

(2)直线与平面相交——有且只有一个公共点

(3)直线在平面平行——没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α

2.21直线、平面平行的`判定及其性质

2.2.1直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:

bβ=>a∥α

a∥b

空间几何体的三视图

1、定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

2、注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:V=;S=

5、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一 ……此处隐藏842个字……n—2=…=ak+an—k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm—1=(2n—1)an,S2n+1=(2n+1)an+1,Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…或等差数列,等等。

基本公式:

和=(首项+末项)×项数÷2

项数=(末项—首项)÷公差+1

首项=2和÷项数—末项

末项=2和÷项数—首项

末项=首项+(项数—1)×公差

高二数学重点知识点7

一、随机事件

主要掌握好(三四五)

(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;

(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的.可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,........,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...........,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

高二数学重点知识点8

解三角形

1、三角形三角关系:A+B+C=180°;C=180°-(A+B);

2、三角形三边关系:a+b>c; a-b3、三角形中的基本关系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222

4、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin

5、正弦定理的变形公式:

①化角为边:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R

a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化边为角:sin??6、两类正弦定理解三角形的问题:

①已知两角和任意一边,求其他的两边及一角.

②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))

7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

b2?c2?a2a2?c2?b2a2?b2?c2

8、余弦定理的.推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)

10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:

①若a?b?c,则C?90;②若a?b?c,则C?90;

③若a?b?c,则C?90.

高二数学重点知识点9

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

5.等差数列与等比数列对比小结:

等差数列等比数列

一、定义

二、公式1.

2.

1.

2.

三、性质1.,

称为与的等差中项

2.若(、、、),则

3.,,成等差数列

1.,

称为与的等比中项

2.若(、、、),则

3.,,成等比数列

(三)不等式

1、;;.

2、不等式的性质:①;②;③;

④,;⑤;

⑥;⑦;

⑧.

小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。

在字母比较的.选择或填空题中,常采用特值法验证。

3、一元二次不等式解法:

(1)化成标准式:;(2)求出对应的一元二次方程的根;

(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。

《高二数学重点知识点通用9篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式